70 research outputs found

    Capillary Condensation in Confined Media

    Full text link
    We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and crack tips) and to their influence on AFM imaging techniques as well as on the static and dynamic friction properties of solids (including granular heaps and sliding nanocontacts). A great attention is spent in investigating the delicate role of the surface roughness and all the difficulties involved in the reduction of the probe size to nanometric dimensions. Another major consequence of capillary condensation in nanosystems is the activation of several chemical and corrosive processes that can significantly alter the surface properties, such as dissolution/redeposition of solid materials and stress-corrosion crack propagation.Comment: 28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Pres

    Giant osmotic pressure in the forced wetting of hydrophobic nanopores

    Full text link
    The forced intrusion of water in hydrophobic nanoporous pulverulent material is of interest for quick storage of energy. With nanometric pores the energy storage capacity is controlled by interfacial phenomena. With subnanometric pores, we demonstrate that a breakdown occurs with the emergence of molecular exclusion as a leading contribution. This bulk exclusion effect leads to an osmotic contribution to the pressure that can reach levels never previously sustained. We illustrate on various electrolytes and different microporous materials, that a simple osmotic pressure law accounts quantitatively for the enhancement of the intrusion and extrusion pressures governing the forced wetting and spontaneous drying of the nanopores. Using electrolyte solutions, energy storage and power capacities can be widely enhanced

    Proximity effect on hydrodynamic interaction between a sphere and a plane measured by Force Feedback Microscopy at different frequencies

    Full text link
    In this article, we measure the viscous damping G′′,G'', and the associated stiffness G′,G', of a liquid flow in sphere-plane geometry in a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM)we are then able to measure simultaneously the static force, the stiffness and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus with a probe radius hundred times bigger. In this context the FFM can be called nano-SFA

    Out of equilibrium anomalous elastic response of a water nano-meniscus

    Full text link
    We report the observation of a transition in the dynamical properties of water nano-menicus which dramatically change when probed at different time scales. Using a AFM mode that we name Force Feedback Microscopy, we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G''(kg/sec) together with the static force. At low frequency we observe a negative stiffness as expected for capillary forces. As the measuring time approaches the microsecond, the dynamic response exhibits a transition toward a very large positive stiffness. When evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile. This transition is essentially controlled by variations of Laplace pressure

    Intrusion and extrusion of water in hydrophobic mesopores

    Full text link
    We present experimental and theoretical results on intrusion-extrusion cycles of water in hydrophobic mesoporous materials, characterized by independent cylindrical pores. The intrusion, which takes place above the bulk saturation pressure, can be well described using a macroscopic capillary model. Once the material is saturated with water, extrusion takes place upon reduction of the externally applied pressure; Our results for the extrusion pressure can only be understood by assuming that the limiting extrusion mechanism is the nucleation of a vapour bubble inside the pores. A comparison of calculated and experimental nucleation pressures shows that a proper inclusion of line tension effects is necessary to account for the observed values of nucleation barriers. Negative line tensions of order 10−11J.m−110^{-11} \mathrm{J.m}^{-1} are found for our system, in reasonable agreement with other experimental estimates of this quantity

    Nanorhéomètre pour l’étude des liquides confiné

    No full text
    International audienceNanorhéomètre pour la mesure des propriétés mécaniques sans contac

    Effect of Surface Elasticity on the Rheology of Nanometric Liquids

    No full text
    International audienceThe rheological properties of liquids con ned to nanometer scales are important in many physical situations. In this paper we demonstrate that the long range elastic deformation of the con ning surfaces must be taken into account when considering the rheology of nanometric liquids. In the case of a squeeze- ow geometry, we show that below a critical distance Dc the liquid is clamped by its viscosity and its intrinsic properties cannot be disentangled from the global system response. Using nanorheology experiments, we demonstrate that picometer elastic de ections of the rigid con ning surfaces dominate the overall mechanical response of nanometric liquids con ned between solid walls

    Low Friction Flows of Liquids at Nanopatterned Interfaces

    Full text link
    With the recent important development of microfluidic systems, miniaturization of flow devices has become a real challenge. Microchannels, however, are characterized by a large surface to volume ratio, so that surface properties strongly affect flow resistance in submicrometric devices. We present here results showing that the concerted effect of wetting . properties and surface roughness may considerably reduce friction of the fluid past the boundaries. The slippage of the fluid at the channel boundaries is shown to be drastically increased by using surfaces that are patterned at the nanometer scale. This effect occurs in the regime where the surface pattern is partially dewetted, in the spirit of the 'superhydrophobic' effects that have been recently discovered at the macroscopic scales. Our results show for the first time that, in contrast to the common belief, surface friction may be reduced by surface roughness. They also open the possibility of a controlled realization of the 'nanobubbles' that have long been suspected to play a role in interfacial slippag
    • …
    corecore